Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 1004, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824708

RESUMO

Chromatophore organs in cephalopod skin are known to produce ultra-fast changes in appearance for camouflage and communication. Light-scattering pigment granules within chromatocytes have been presumed to be the sole source of coloration in these complex organs. We report the discovery of structural coloration emanating in precise register with expanded pigmented chromatocytes. Concurrently, using an annotated squid chromatophore proteome together with microscopy, we identify a likely biochemical component of this reflective coloration as reflectin proteins distributed in sheath cells that envelop each chromatocyte. Additionally, within the chromatocytes, where the pigment resides in nanostructured granules, we find the lens protein Ω- crystallin interfacing tightly with pigment molecules. These findings offer fresh perspectives on the intricate biophotonic interplay between pigmentary and structural coloration elements tightly co-located within the same dynamic flexible organ - a feature that may help inspire the development of new classes of engineered materials that change color and pattern.


Assuntos
Cefalópodes/química , Cefalópodes/ultraestrutura , Cromatóforos/química , Cromatóforos/ultraestrutura , Pigmentação da Pele , Animais , Cor , Grânulos Citoplasmáticos/ultraestrutura , Decapodiformes , Simulação de Acoplamento Molecular , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Proteoma , Pele , Transcriptoma
2.
J Vis Exp ; (117)2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27911390

RESUMO

Cephalopods can undergo rapid and adaptive changes in dermal coloration for sensing, communication, defense, and reproduction purposes. These capabilities are supported in part by the areal expansion and retraction of pigmented organs known as chromatophores. While it is known that the chromatophores contain a tethered network of pigmented granules, their structure-function properties have not been fully detailed. We describe a method for isolating the nanostructured granules in squid Doryteuthis pealeii chromatophores and demonstrate how their associated pigments can be extracted in acidic solvents. To accomplish this, the chromatophore containing dermal layer is first manually isolated using a superficial dissection, and the pigment granules are removed using sonication, centrifugation, and washing cycles. Pigments confined within the purified granules are then extracted via acidic methanol solutions, leaving nanostructures with smaller diameters that are void of visible color. This extraction procedure produces a 58% yield of soluble pigments isolated from granules. Using this method, the composition of the chromatophore pigments can be determined and used to provide insight into the mechanism of adaptive coloration in cephalopods.


Assuntos
Cromatóforos , Corantes , Decapodiformes , Animais , Pigmentação da Pele
3.
Langmuir ; 32(15): 3754-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27049640

RESUMO

Understanding the structure-function relationships of pigment-based nanostructures can provide insight into the molecular mechanisms behind biological signaling, camouflage, or communication experienced in many species. In squid Doryteuthis pealeii, combinations of phenoxazone-based pigments are identified as the source of visible color within the nanostructured granules that populate dermal chromatophore organs. In the absence of the pigments, granules experience a reduction in diameter with the loss of visible color, suggesting important structural and functional features. Energy gaps are estimated from electronic absorption spectra, revealing highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energies that are dependent upon the varying carboxylated states of the pigment. These results implicate a hierarchical mechanism for the bulk coloration in cephalopods originating from the molecular components confined within in the nanostructured granules of chromatophore organs.


Assuntos
Cromatóforos/ultraestrutura , Decapodiformes/química , Oxazinas/química , Pigmentos Biológicos/química , Xantenos/química , Animais , Espectrometria de Massas , Modelos Químicos , Oxazinas/isolamento & purificação , Pigmentos Biológicos/isolamento & purificação , Xantenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...